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turbation series. The validity of these approximations 
has already been mentioned in Sec. I l l except the fol
lowing one: In the two particle Green's function (3.8), 
the two particles are assumed to be excited to the inter
mediate states from zero-momentum states. This ap
proximation makes the screening factors Di momentum-
independent, and it seems to be a poor approximation 
especially for large momentum. However, its effect on 
the excitation spectrum can not be known until a 
numerical procedure is applied to find out the mo
mentum dependence of Di. This investigation is pres
ently being carried out and the results will be reported 
separately. 

In summary, we have derived an excitation spectrum 
in liquid helium in good qualitative agreement with ex
periments by assuming a hard-sphere-model potential. 

I. INTRODUCTION 

WITH the introduction of phenomenological pair
ing interactions, the theory of superconductivity, 

as adapted to finite systems1 is successful in explaining 
the spectra of low-lying states of many nuclei and the 
thermodynamic properties of finite metallic super
conductors. We wish to point out that no coupling 
exists from discrete to continuum states in this theory, 
and consequently it does not approach the normal BCS2 

theory as the size of the system becomes infinite. We 
show, however, that this failure can be rectified to 
order (A/EF)2 by either (a) a generalization of the 
BCS variational-type wave function, or (b) an extension 
of the Bogoliubov principle of compensating dangerous 
diagrams. 

The BCS "integral" equation for the energy gap of 

* Supported in part by the U. S. Atomic Energy Commission 
under contract A.T. (45-1)4388, program B. 
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Medd. 31, No. 11 (1959); see also, L. S. Kisslinger and R. A. 
Sorensen, ibid. 32, No. 9 (1960); J. M. Blatt and C. J. Thompson, 
Phys. Rev. Letters 10, 332 (1963); R. C. Kennedy, L. Wilets, 
and E. M. Henley, ibid. 12, 36 (1964). 

2 T. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 

I t is, therefore, hopeful that by taking a more realistic 
potential for helium including an attractive tail and 
by improving some of our calculational procedures, 
mainly the momentum dependence of the screening 
factors, we may even achieve a quantitative agreement 
between the spectrum calculated from first principles 
and that from experiments. 
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a finite or infinite system is 

(a-a\V\a'-a?)Aa> 
A ^ - i Z - — — , (1) 

«' (Aat+ta'*)1* 

where | —a) denotes the single-particle state time 
reversed with respect to the state \a), and ea is the 
single-particle energy measured with respect to the 
Fermi energy EF. For a finite system, the eigenstates 
we consider are those of fermions bound in a self-
consistent single-particle potential well of dimension /. 
The energy spectrum consists of a discrete part, 
labeled by quantum numbers n, m and a continuum set 
labeled by indices k, I. Equation (1) can be separated 
as follows: 

A n = ~ I E » ' F„„ 'A n / /J3 n /— / Vnk>Ak>/Ev, (2a) 

Ak= - J I > 7 f c„,A n , /E n ,— [ VwAv/Ev , (2b) 

2 A' 
where Vaa,^(a-a\V\a'-a') and Ea= (A«2+e«2)1/2. 
Here ,/&=£*>—» {Lllirff&k, where L is the dimen-
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It is demonstrated that the standard applications of the BCS theory to finite systems does not possess the 
proper asymptotic behavior as the size of the system becomes infinite. In particular, no coupling exists from 
discrete states to those of positive energy unless the two-body potential is very strong (i.e., stronger than nu
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variational wave function, and (b) an extension of the Bogoliubov principle of compensating dangerous 
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sion of the box used for quantizing the continuum 
states, and we let L —> oo. If the range and depth of 
the two-body potential are a and Vo, then the orders of 
magnitude of the various matrix elements are 

Vnn>~(a/l)Wo, Vnjc^ia/LYVo, Vkk^(a/L)W0. (3) 

I t is the dependence on L which is of primary interest. 
In the limit L —> oo the discrete sum in Eq. (2b) 
vanishes as L~s, whereas the integral over the continuum 
approaches a finite limit. Thus, the continuum de
couples from the discrete states, and the resultant 
integral equation (2b) for A& is formally the same as 
that which determines the existence of a two-particle 
bound state with a binding energy greater than EF. 
Nuclear forces are not sufficiently strong to satisfy this 
condition, and we will restrict our general consideration 
to such forces. Thus, the dependence of Ak on the 
characteristic dimensions is determined by the first 
(homogeneous) term on the right-hand side of (2b), 
and we find 

Ak/An=6(Voa*/\EF\U). (4) 

For this reason the integral over k' in Eq. (2a) vanishes 
as L~s and only matrix elements to discrete states 
contribute in the evaluation of An. If we now let the 
system become infinitely large, /—> °o but / / X = 0 , 
matrix elements to "continuum" states (€>\EF\) still 
fail to contribute. Coupling to "continuum" states does 
obtain if we let / —» oo ? L —> oo with l/L= 1; this yields 
the usual BCS theory. Since any physical system is 
finite, only the limit with l/L = 0 is appropriate. 

Before discussing what we believe to be improved 
formulations for the finite problem, we recast the BCS 
gap equation by separating the states lying near the 
Fermi surface (N) from those far away (K). These 
states could be bound (n) and continuum states (k), 
respectively, but some of the discrete states could be 
included in K, for instance. The resulting equations are 
the same as Eqs. (2a) and (2b) with n—>N, k—>K. 
We introduce gKiN\ where AK= — \ T,N gKmAN/EN, 
and gK(N) satisfies 

VKK>gK>m 

gKm = VKN-h ZK . (5a) 
EK> 

In terms of gK(N) the solution of Eq. (2a) for AN 

becomes 
A W VNK'gK'<Nr>> 

AJV= — \ !> ' ( VNN> — \ YLK> —• 
EN' \ ER' 

K>gK>(N,)\ 

EK> ) 

- -*£*< 
AN>G NN' 

EN' 
(5b) 

I t can be verified by iteration of Eq. (5a) that G 
satisfied 

G=VR+VR(Q/D)G, (6) 

where Q is a projection operator onto the set (K); the 

operator VR (R for reduced) is restricted to allow 
matrix elements between time-reversed states only, 
and D=—2EK. Since the states (K) are far removed 
from the Fermi surface, EK~ \ZK\, and G is independent 
of AK. I t follows that the nonlinear Eq. (5b) involves 
only the energy-gap parameters in the set (N). If the 
set K is identified as the continuum set k, the iteration 
of Eq. (6) shows that GNNf = Gnn'—Vnn'7 as demon
strated earlier. 

II. MODIFIED VARIATIONAL WAVE FUNCTION 

In order to include coupling to the continuum states 
in the BCS gap equation, we have reformulated the 
pairing problem in two ways which yield similar results. 
The first is a variational method, based on a generaliza
tion of the BCS trial wave function, 

I ̂ ) = I I {uKL+VKiAK*aif) I I (uN+vNaN1a-N1) 10), (7) 
KL N 

where |0) is the vacuum state, UN2+VN2=19 and we 
have fixed the normalization of the UKL and VKL by 
choosing W ^ L 2 + ^ X L 2 = 1 . The set KL identifies two 
fermion states far away from the Fermi surface, and 
are not necessarily time-reversed; they may, in partic
ular, be thought to belong to the continuum. 

The liamiltonian for the system is 

+ 4 Ha1a',a",a'"{a,a\V\a,fa"f)aJaJaa"aa'^, (8) 

with ea measured with respect to the chemical potential 
(Fermi energy). Variation of the energy ty\H\\j/)/ 
(\p\ip) with respect to VN and VKL leads to the coupled 
equations 

A* = - i £ * ' (N-N\ V\N'-N')AN,/ENf 

- [ [ {N-N\V\KL)vKL 

J K J L 
+ e(v0 vvvj, (9a) 

7/ 
J K' J L' 

(eK+eL)vKL= - J I > (N-N\ V\KL)AN/EN 

(K'L'\V\KL)vK,L, 

+ e(Vo f fm\+e\Erf J (e/EF)m\, (9b) 

where AN is introduced through 

/uN\ 

with EN= (e^+Ajv2)1'2. To lowest order in VKL, we find 

file:///p/ip
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FIG. 1. Diagrammatic representation of the compensation 
condition. Figure (a) is the general condition; Fig. (b) displays 
some contributions from two-particle nontime-reversed distant 
intermediate states, and Fig. (c) some other two-particle inter
mediate-state contributions. (NM) denote particle states near 
the Fermi surface and (KL) represent distant states. 

an expression identical to Eq. (5b), but with G satisfying 

G=V+V(Q/D)G. (10) 

Here V is the interparticle potential operator connecting 
to intermediate states which need not be time-reversed 
pairs (unlike VR) . Only in the limit of an infinite system 
does momentum conservation restrict V to connect 
time reversed states. To the same order in VKL, we see 
that 

1 A^ 
VKL= HN{N-N\G\KL)— . (11) 

2(eK+eL) EN 

Utilizing Eq. (3) and defining the far states by | €K \ > w, 
we find that 

A f {l/L)z for K,L continuous, 
VKL<—X\ (12) 

2w { 1 for K,L discrete, 

where A is characteristic of the energy gap near the 
Fermi surface. Even though VKL is of the order (l/L)z 

for the continuum, these states do contribute to the 
energy gap AN because the number of such nonreversed 
states is greater than the number of reversed states by 
a factor U. Equation (12) allows us to estimate the 
error made by neglecting terms of higher order in VKL-
We note that the kernels of our integral Eq. (9) are an 
expansion in (A/2w)2. The neglect of higher order terms 
is therefore certainly justified in the limit of weak 
two-particle forces. 

III. MODIFIED BOGOLIUBOV PRINCIPLE 

The other formulation of the theory invokes the 
Bogoliubov principle of compensating dangerous dia
grams. Following the standard Bogoliubov-Valatin 
transformation3 the compensation condition is stated 
as follows: All ground-state diagrams containing a time-
reversed pair [see Fig. 1(a)] sum to zero. For the 
infinite system, this is equivalent to the statement that 
all diagrams containing an isolated pair sum to zero.4 

But in the finite system, momentum need not be con
served and we must include diagrams of the kind shown 
in Figs. 1(b) and 1(c). Note that no isolated time-
reversed pairs can appear as intermediate states. 
Omission of the diagrams corresponding to Fig. 1(c), 
and others not shown, leads to the variational result, 
Eqs. (5b) and (10). The omission of diagrams (c) is in 
the spirit of the ordinary BCS theory. The "con
sistency" of including nonreversed continuum states 
but only reversed discrete states is as follows: Discrete 
time-reversed states have an uncertainty in center-of-
mass momentum of the order of h/l, and nontime-
reversed discrete pairs have center-of-mass momentum 
(roughly) greater than h/l. The continuum pairs which 
couple effectively to the time-reversed discrete pairs will 
also have center-of-mass momentum of the order or 
less than h/l. 

IV. CONCLUSIONS 

A result formally similar to that reported here has 
been presented by Bando, Murota, and Nagata.5 Their 
motivation was not based on the loss of coupling 
between discrete and continuum states, but rather on 
the desire to treat hard cores and to include the dia
grams of the Be the-Golds tone6 perturbation expansion. 
They obtain an effective pairing interaction based on a 
Brueckner-type T matrix which can include coupling 
to the continuum. By contrast, we have shown that we 
are forced to the present formulation in order to obtain 
the correct limit for an infinite system. 

Applications to finite nuclei are in progress. 
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